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Abstract. This paper addresses the quality inspection and cost optimization issues faced by an
electronic product manufacturing enterprise by proposing a hybrid decision-making model based on
sequential detection and dynamic programming. A truncated sequential confidence inspection model
is constructed by integrating sequential sampling and likelihood ratio test methods. Under the
condition of a nominal defective rate of 10%, the model enables dynamic adjustment of the sampling
volume. When the actual defective rate is 20%, the model can reject an entire batch of spare parts
with a relatively small number of samples. When the defective rate is close to the nominal value, it
can reduce the number of samples to avoid excessive inspection. Meanwhile, a multi-stage dynamic
programming model is established to minimize costs, and the optimal decision-making schemes for
six typical production scenarios are derived and verified. This model provides decision-making
support for enterprises that balances quality control and cost-effectiveness.

Keywords: Truncated Sequential Sampling, Likelihood Ratio Test (LRT), Dynamic Programming,
Total Cost Minimization, Production Decision Optimization.

1. Introduction

In recent years, the escalating demands for quality control and cost optimization in manufacturing
have propelled the design of efficient sampling inspection schemes and the optimization of multi-
stage production decisions to the forefront of academic and industrial research. While scholars
worldwide have conducted extensive investigations in related domains, several theoretical gaps
persist, particularly in dynamically integrating inspection strategies with cost-driven decision-making
under uncertain production environments.

Existing research in sampling inspection exhibits notable limitations. Zhang et al. (2011) [1]
proposed a generalized attribute-based sequential sampling method, enhancing the efficiency of
traditional sequential sampling through asymmetric testing intervals. However, their framework
overlooked the cost implications of dynamically adjusting sample sizes, a critical factor in practical
manufacturing. Zhang et al. (2006) [2] analyzed sampling decisions in supply chain quality
management from a game-theoretic perspective but assumed a fixed defect rate, which fails to account
for the dynamic uncertainties inherent in real-world production processes. Hao et al. (2024) [3]
leveraged Bayesian inference to optimize non-probabilistic sampling estimation, yet their approach
lacked integration with sequential inspection frameworks, precluding real-time updates of defect rates
based on cumulative data. Moreover, most studies remain theoretically oriented, with insufficient
systematic optimization of inspection costs and decision pathways across complex, multi-stage
production scenarios.

Against this backdrop, sequential sampling emerges as a pivotal methodology for manufacturers
to assess supplier component defect rates under resource constraints (e.g., time, budget). As a
progressive inspection technique, sequential sampling allows adaptive adjustment of subsequent
sampling strategies based on prior batch results, enabling efficient allocation of inspection efforts [4-
5]. The likelihood ratio test (LRT) serves as a statistically rigorous criterion in this process, providing
a quantitative basis for accepting or rejecting product batches by evaluating whether cumulative
inspection results meet predefined quality thresholds [6-7]. Truncation-introducing a maximum
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sample size limit in sequential sampling-further ensures practical feasibility by preventing indefinite
sampling, compelling a final decision (acceptance or rejection) once the upper bound is reached [8].

To address these research gaps, this study proposes a hybrid methodology integrating dynamic
sampling with intelligent optimization. First, a truncated sequential credibility inspection model is
designed to dynamically adjust sampling strategies for component defect rate verification,
minimizing inspection costs while maintaining statistical rigor. Second, a multi-stage dynamic
programming (DP) model is developed to systematically optimize production decisions across
inspection, assembly, and defect handling stages, quantifying inter-stage cost dependencies to derive
globally optimal solutions. The core innovations lie in: 1) the synergistic integration of truncation
design and LRT to achieve adaptive sample size reduction under specified confidence levels; and 2)
the formulation of DP-based state transition equations to reconcile inspection, assembly, and
disassembly costs, enabling holistic optimization of production workflows. By bridging theoretical
methodology with practical cost considerations, this research provides a data-driven decision
framework for balancing quality assurance and operational efficiency, particularly suited to high-mix,
low-volume manufacturing environments.

2. Research on Design of Product Defect Rate Inspection Methodology

2.1. Design of Inspection Methodology

(1) Basic Assumptions and Parameter Definition

The defect rate inspection fundamentally constitutes a repetitive Bernoulli trial process, where the
sample population can be modeled as a binomial distribution. Sequential sampling is implemented
by iteratively inspecting one component per trial until predefined stopping criteria are satisfied.

Let the nominal defect rate (specified threshold) be p, and the true population defect rate be P .
The hypothesis framework is formalized as null hypothesis H,:p<p,, alternative hypothesis
H, :p>p,.

Following each sequential sampling iteration, the likelihood ratio A is computed and utilized to
determine whether to accept HO or continue sampling.

(2) Setting Sampling Termination Criteria

Based on statistical principles, two thresholds can be established to determine sampling

termination: the upper stopping threshold SA:% (for rejecting H, )and the lower stopping

threshold Sf% (for accepting H,).

a denotes the probability of committing a Type | error (incorrectly rejecting a true H;). S8

denotes the probability of committing a Type Il error (incorrectly accepting a false H,).

(3) Sequential Sampling and Decision-Making

Perform sequential sampling on the components. After each sampling an inspection, calculate the
likelihood ratio 4.

Under the binomial distribution assumption, suppose N components have been sampled, with X

. . . "X
defective items. The sample defect rate is estimated as p = o

Under the null hypothesis H,, the nominal defect rate is p, =10%. If the defect rate under H,

is significantly greater than 10%, it can be hypothesized as p; .
According to the definition of the likelihood function, it follows that

L(H)=p*(-p)™* 1)
Thus, the likelihood ratio A is:
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A= p())( (1_ po)n_><
plx(l_ pl)m><

If A>S,, reject HO and accept H1; If 4 <S;, accept H, and reject H,; If S, <A<S;,
continue sampling.

()

2.2. Model Solution

In practical production processes, manufacturers must make acceptance or rejection decisions
under different confidence levels. This study evaluates the proposed model under two specific
confidence levels: 95% (Case 1) and 90% (Case 2). Based on these confidence levels, the
corresponding Type | error probability « is calculated. Empirical statistical knowledge suggests that
o and 1—/ exhibit an approximate inverse relationship. Therefore, during the solution process,
the value of B is selected according to <.

For Case 1 (95% confidence level), we obtain « =0.05 and B =0.1, with the upper stopping
threshold S, =18 and the lower stopping threshold Sg, = 0.105; For Case 2 (90% confidence
level), we have a =0.1 and £ =0.2, with the upper stopping threshold S, ~0.222.

Based on the stopping boundaries (S,,Sz) under both scenarios, sequential sampling is

performed on the component population. The likelihood ratio A is calculated, and corresponding
decisions are made according to the model rules.

2.3. Analysis of Model Results

To further validate the model's rationality, two sample categories were selected for visualization
on the Python platform: one with defect rates significantly exceeding the nominal value and the other
approximating the nominal value, as illustrated in Figure 1.
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Figure 1. Variation of Log-Likelihood Ratio in Sequential Analysis
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Table 1. Description of Likelihood Ratio Logarithmic VValue Changes
Case 1 (95%) Case 2 (90%)
Defect Rate 0.2 0.08 0.2 0.08
Stopping Sample Size 135 338 117 204
Logarithm of Likelihood Ratio 2.905>In (Sa1) | -2.271<In (Se1) | 2.081>In (Sp2) | -1.513<In (Sg2)
Corresponding Figure Reject Ho Accept Ho Reject Ho Accept Ho
Corresponding Figure Figure 1a Figure 1b Figure 1c Figure 1d

To validate the model’s rationality, this study visualizes log-likelihood ratio trends for two sample
types-20% (high defect rate) and 8% (near-nominal defect rate)-under 95% and 90% confidence
levels via Python (Figure 1). Four subplots illustrate the dynamic decision mechanism.

For 20% defect rates (subplots (a, c)), the log-likelihood ratio rises rapidly, exceeding the upper
threshold to trigger rejection: 135 samples (95% confidence) and 117 samples (90% confidence),
both fewer than fixed-sample methods, demonstrating efficient risk screening and adaptability to
confidence requirements.

At 8% defect rates (subplots (b, d)), the ratio stabilizes around zero before declining to the lower
threshold for acceptance: 338 samples (95%) and 204 samples (90%), minimizing over-inspection
compared to fixed sampling. Confidence-level differences validate the inverse efficiency-correlation,
guiding strategy adjustments.

Table 1 and subplots show the model uses likelihood ratio dynamics to reduce inspections for
deviating defects and prevent waste near nominal levels, balancing quality and cost effectively.

3. Research on Cost Optimization Decision Model

3.1. Establishment of Minimum-Cost Decision Model

Following the requirements for decision model construction, the objective function is defined to
maximize corporate profit [9].

maxmz =V—C (3)

(1) Stage-Specific Cost Analysis
For Stage 1, costs include material costs and inspection costs.
The manufacturer decides whether to inspect components. If inspected, the process incurs a unit

inspection cost C; per component. Qualified components proceed to assembly, while defective ones
are removed. The cost of defective components is calculated as P; - C;, where p; is the defect rate

of component i,and C, denotes the unit purchase price of component i .

For Stage 2, costs include assembly costs and inspection costs, while revenue derives from the
market selling price of finished products.

The enterprise incurs a unit assembly cost €, for assembling components into finished products.
A decision is made on whether to inspect the assembled products. If inspected, a unit inspection cost
C. isincurred. The revenue from qualified products is calculated as:

V—ZCpi —c, 4)

Defective products detected during inspection proceed to the next stage's decision-making, while
non-inspected finished products are entirely released into the market. To address the complexity and
consistency of model variables, the revenue from finished products is converted into a negative cost

-V, and the product manufacturing cost C, is defined as:
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2
C= D Cp+C—V (5)

i=1
For Stage 3, costs include disassembly costs, opportunity costs of discarding finished products,
and reuse costs of disassembled components.
The enterprise replaces non-inspected defective products, incurring a unit replacement cost C, .

For defective products detected post-inspection and returned defective products, a disassembly
decision is made:

If disassembly is chosen, a unit disassembly cost C, is incurred. Disassembled components are

then reused, with a unit reuse cost C, .If disassembly is declined, an opportunity cost C, is incurred

due to product discard.
Integrating the Stage 3 analysis, the total cost Cow of finished products can be expressed as:

Cotas =G +C. +C, +C, +C, +C, (6)
(2) Objective Function Formulation

After converting the revenue from finished products into a negative cost —v, the objective
function is transformed into a cost minimization function min . Integrating the cost analyses across

all stages outlined above, the cost minimization function minc is defined by the following
relationship:

min C= Ctotal (7)

During the model establishment phase, multiple interdependent stages (e.g., component inspection,
finished product assembly, product inspection, and defective product handling) and state transitions
(e.g., component qualification status influencing subsequent decisions) are involved. These stages
exhibit dependency relationships, where decision outcomes from prior stages directly affect the costs
and benefits of subsequent stages.

Dynamic programming is well-suited for such problems due to its ability to handle overlapping
subproblems and exploit optimal substructure properties [10]. By formulating state transition
equations and preserving intermediate computational results, the method eliminates redundant
calculations, thereby efficiently identifying the global optimal solution [11].

3.2. Model Solution

(1) Stage Identification in Dynamic Programming Process

The stages in the dynamic programming process align with the three production stages established
in the model (Section 3.1).

(2) Decision Variables and Allowable Decision Sets

For Stage 1, the decision variable di represents the inspection decision for component j, where:

d =

0, donotinspectcomponenti .
{ P P (i=12) (8)

1, inspect component i
For Stage 2, the decision variable ds represents the inspection decision for finished products:

d - 0, donotinspect finished products
L inspect finished products

(9)

For Stage 3, the decision variable da represents the disassembly decision for defective finished
products:
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d - 0, donotdisassembledefective finished products 10
Y disassemble defective finished products (10)

Allowable decision set:
D={d,,d,,d;d,} (11)

(3) Formulation of State Transition Equation
The state variable S, represents the cumulative set of all decisions made from the initial stage to
the current stage. The state transition equation is formulated as follows:

s, =4 d,,d, k=2 (12)

(4) Determination of Optimal Value Function
The optimal value function V; (Si ) representing the cumulative cost from the initial stage to the

current stage, satisfies the following recursive relationship. The dynamic programming approach is
applied in a backward induction manner to solve for the minimum total cost from Stage 3 to Stagel.

For Stage 3, disassembled products comprise two categories: Non-inspected replaced products
(defective items returned without prior inspection). Inspected defective products (identified through
quality checks in Stage 2).

When d, =0, defective products are not disassembled and are directly discarded. When d, =1,
the enterprise incurs the reuse cost d,-c, for inspected defective products, while bearing the
replacement cost (1—d,)-c; for non-inspected defective products and recovering their material cost
(1-d,)d, -c,.

Here, the reuse cost cu comprises the disassembly cost cr and the recycled material cost
V; (d,,d, ), mathematically expressed as:

¢, =c—V,(d,d,) (13)

Therefore, the mathematical expression for V is:
3(S3)

V,(s;)=d, c+(1-d,)-[c,+c —d,C.] (14)
For Stage 2, when d, =0 (noinspection of finished products), V,(s,) equals the manufacturing

cost C,; when d; =0 (inspection performed), V,(S,) includes the unit inspection cost C., the

expected cost E [Pq] for defective products entering Stage 3, and the expected cost E [P ]

for qualified products in Stage 2. The expected cost for defective products entering Stage 3 is defined
as:

Er[pfail] = Prai -V3(53) (15)

P denotes the actual defect rate of finished products.

pfan:l_(l_df pl) ’ (1_dz' pz) ’ (1_ ps) (16)
The expected cost E,[P] for conforming products in Stage 2 is defined as follows:
Eo[pfail] = (1_ pfail)ct (17)
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Therefore, the mathematical expression for V,(S,) can be formulated as:
V2 (SZ) = d3'{Cc+ Er[ pfail] + Eo[ pfail ]}+ (1_ d3) ’ Ct (18)

= ds’ [Cc‘|' pfan'vs(sz) + (1_ pfail) 'Ct] + (1_ d3) -G

Integrating the recursive processes across all three stages, the optimal value function for the initial
stage is determined as follows:

Vi(5) = X de e By -y + (L ) V()] + (- d)-Vifs)

i=1

(19)

Integrating the recursive processes across all three stages, the optimal value function for the initial
stage is determined as follows:

msfn\/l(sl) (20)

Based on the established optimal value functions, this study derives optimal decisions for six
typical production scenarios encountered by the enterprise in component manufacturing, as detailed
in Table 2. Given the objective of minimizing total costs, a negative optimal total cost indicates
corporate profitability, whereas a positive value signifies financial losses.

Table 2. Six Typical Production Scenarios Encountered by the Enterprise

Component 1 Component 2 Finished Products DEfeCPt;XSUFC'tr; ished
Scenario Defect PquJcr;:;se Inspection|Defect PquJcT:;se Inspection |Defect Pu'}Jcrl]:;se Inspection g/le?lrﬁegt Replacement|Disassembly
Rate . Cost Rate . Cost Rate . Cost . Loss Cost
Price Price Price Price

1 10% 4 2 10% 18 3 10% 6 3 56 6 5

2 20% 4 2 20% 18 3 20% 6 3 56 6 5

3 10% 4 2 10% 18 3 10% 6 3 56 30 5

4 20% 4 1 20% 18 1 20% 6 2 56 30 5

5 10% 4 8 20% 18 1 10% 6 2 56 10 5

6 5% 4 2 5% 18 3 5% 6 3 56 10 40

Using a reference batch of 100 finished products for each scenario, the detailed decision outcomes
are summarized in Table 3.

Table 3. Description of Optimal Decisions for Each Scenario

Scenario | Profit Amount Stage 1 Stage 2 Stage 3
Do not inspect Component 1 and | Do not inspect finished Do not disassemble
1 2060.0 :
Component 2 products defective products
Do not inspect Component 1 and | Do not inspect finished Do not disassemble
2 1320.0 .
Component 2 products defective products
Inspect Component 1 and Do not inspect finished Do not disassemble
3 1440.0 .
Component 2 products defective products
Inspect Component 1 and Do not inspect finished | Disassemble defective
4 980.0
Component 2 products products
Do not inspect Component 1; Do not inspect finished Do not disassemble
5 1940.0 . .
inspect Component 2 products defective products
Do not inspect Component 1 and | Do not inspect finished Do not disassemble
6 2430.0 .
Component 2 products defective products

Table 3 reveals varying optimal decisions in different production scenarios. In most cases (e.g.,

Scenarios 1, 2, 6), high inspection costs or near-nominal defect rates lead to no inspection in Stages
1 and 2, controlling costs for profit. When defect rates rise (Scenarios 3, 4) or inspection costs are
low, Stage 1 inspects components. In Scenario 4, high replacement losses prompt Stage 3 to
disassemble defective products. The model balances stage-wise costs via dynamic programming,
aligning decisions with profit goals and validating multi-stage optimization.
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3.3. Model Evaluation

To further validate whether the optimal solutions derived by the minimum-cost decision model for
the six typical scenarios align with practical feasibility, we perform an exhaustive enumeration of all
16 decision possibilities for each scenario, resulting in a total of 96 possibilities.

Figure 2. Profit Amount Comparison Chart for All Decision Scenarios

The profit amounts for all possible scenarios are visualized as shown in Figure 2. After exhaustive
enumeration, the six optimal decisions corresponding to minimum cost and maximum revenue for
the six typical scenarios align perfectly with the optimal solutions derived by the minimum-cost
decision model for the cases in Table 2. Based on this, it can be concluded that the model provides
enterprises with optimal decision-making solutions from a minimum-cost perspective.

4. Conclusion

This study proposes a hybrid decision-making model integrating truncated sequential sampling
with dynamic programming to address quality inspection and cost optimization challenges in
electronics manufacturing.

The truncated sequential credibility inspection model dynamically adjusts sampling strategies
based on likelihood ratio tests (LRT). At a 95% confidence level, it efficiently rejects batches with a
20% defect rate using fewer samples than fixed sampling methods and reduces unnecessary
inspections when the defect rate is close to the nominal 10%, significantly lowering inspection costs
while maintaining statistical rigor. The multi-stage dynamic programming model, solving via
backward induction, derives optimal decisions for six typical production scenarios, quantifying cost
dependencies across inspection, assembly, and disassembly stages to achieve global cost
minimization. The core innovation lies in the synergistic integration of truncation design, LRT, and
dynamic programming, forming a quantifiable and reusable decision framework.

Looking ahead, this model can be applied to high-mix, low-volume manufacturing, supply chain
quality management, and intelligent production systems, offering adaptive solutions to balance
quality control and profitability in dynamic industrial environments.
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