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Abstract. This paper addresses the quality inspection and cost optimization issues faced by an 
electronic product manufacturing enterprise by proposing a hybrid decision-making model based on 
sequential detection and dynamic programming. A truncated sequential confidence inspection model 
is constructed by integrating sequential sampling and likelihood ratio test methods. Under the 
condition of a nominal defective rate of 10%, the model enables dynamic adjustment of the sampling 
volume. When the actual defective rate is 20%, the model can reject an entire batch of spare parts 
with a relatively small number of samples. When the defective rate is close to the nominal value, it 
can reduce the number of samples to avoid excessive inspection. Meanwhile, a multi-stage dynamic 
programming model is established to minimize costs, and the optimal decision-making schemes for 
six typical production scenarios are derived and verified. This model provides decision-making 
support for enterprises that balances quality control and cost-effectiveness. 

Keywords: Truncated Sequential Sampling, Likelihood Ratio Test (LRT), Dynamic Programming, 
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1. Introduction 

In recent years, the escalating demands for quality control and cost optimization in manufacturing 

have propelled the design of efficient sampling inspection schemes and the optimization of multi-

stage production decisions to the forefront of academic and industrial research. While scholars 

worldwide have conducted extensive investigations in related domains, several theoretical gaps 

persist, particularly in dynamically integrating inspection strategies with cost-driven decision-making 

under uncertain production environments. 

Existing research in sampling inspection exhibits notable limitations. Zhang et al. (2011) [1] 

proposed a generalized attribute-based sequential sampling method, enhancing the efficiency of 

traditional sequential sampling through asymmetric testing intervals. However, their framework 

overlooked the cost implications of dynamically adjusting sample sizes, a critical factor in practical 

manufacturing. Zhang et al. (2006) [2] analyzed sampling decisions in supply chain quality 

management from a game-theoretic perspective but assumed a fixed defect rate, which fails to account 

for the dynamic uncertainties inherent in real-world production processes. Hao et al. (2024) [3] 

leveraged Bayesian inference to optimize non-probabilistic sampling estimation, yet their approach 

lacked integration with sequential inspection frameworks, precluding real-time updates of defect rates 

based on cumulative data. Moreover, most studies remain theoretically oriented, with insufficient 

systematic optimization of inspection costs and decision pathways across complex, multi-stage 

production scenarios. 

Against this backdrop, sequential sampling emerges as a pivotal methodology for manufacturers 

to assess supplier component defect rates under resource constraints (e.g., time, budget). As a 

progressive inspection technique, sequential sampling allows adaptive adjustment of subsequent 

sampling strategies based on prior batch results, enabling efficient allocation of inspection efforts [4-

5]. The likelihood ratio test (LRT) serves as a statistically rigorous criterion in this process, providing 

a quantitative basis for accepting or rejecting product batches by evaluating whether cumulative 

inspection results meet predefined quality thresholds [6-7]. Truncation-introducing a maximum 
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sample size limit in sequential sampling-further ensures practical feasibility by preventing indefinite 

sampling, compelling a final decision (acceptance or rejection) once the upper bound is reached [8]. 

To address these research gaps, this study proposes a hybrid methodology integrating dynamic 

sampling with intelligent optimization. First, a truncated sequential credibility inspection model is 

designed to dynamically adjust sampling strategies for component defect rate verification, 

minimizing inspection costs while maintaining statistical rigor. Second, a multi-stage dynamic 

programming (DP) model is developed to systematically optimize production decisions across 

inspection, assembly, and defect handling stages, quantifying inter-stage cost dependencies to derive 

globally optimal solutions. The core innovations lie in: 1) the synergistic integration of truncation 

design and LRT to achieve adaptive sample size reduction under specified confidence levels; and 2) 

the formulation of DP-based state transition equations to reconcile inspection, assembly, and 

disassembly costs, enabling holistic optimization of production workflows. By bridging theoretical 

methodology with practical cost considerations, this research provides a data-driven decision 

framework for balancing quality assurance and operational efficiency, particularly suited to high-mix, 

low-volume manufacturing environments. 

2. Research on Design of Product Defect Rate Inspection Methodology 

2.1. Design of Inspection Methodology 

(1) Basic Assumptions and Parameter Definition 

The defect rate inspection fundamentally constitutes a repetitive Bernoulli trial process, where the 

sample population can be modeled as a binomial distribution. Sequential sampling is implemented 

by iteratively inspecting one component per trial until predefined stopping criteria are satisfied. 

Let the nominal defect rate (specified threshold) be 0p  and the true population defect rate be p . 

The hypothesis framework is formalized as null hypothesis 0 0:H p p , alternative hypothesis 

1 0:H p p . 

Following each sequential sampling iteration, the likelihood ratio λ is computed and utilized to 

determine whether to accept H0 or continue sampling. 

(2) Setting Sampling Termination Criteria 

Based on statistical principles, two thresholds can be established to determine sampling 

termination: the upper stopping threshold
1

AS




−
=  (for rejecting 0H )and the lower stopping 

threshold 
1

BS



=

−
 (for accepting 1H ). 

 denotes the probability of committing a Type I error (incorrectly rejecting a true 1H ).   

denotes the probability of committing a Type II error (incorrectly accepting a false 1H ). 

(3) Sequential Sampling and Decision-Making 

Perform sequential sampling on the components. After each sampling an inspection, calculate the 

likelihood ratio  . 

Under the binomial distribution assumption, suppose n  components have been sampled, with x  

defective items. The sample defect rate is estimated as 
^ x
p

n
= . 

Under the null hypothesis 0H , the nominal defect rate is 0 10%p = . If the defect rate under 0H  

is significantly greater than 10%, it can be hypothesized as 1p . 

According to the definition of the likelihood function, it follows that 

( ) (1 )x n xL H p p −= −                              (1) 

Thus, the likelihood ratio   is: 
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=

−
                               (2) 

If AS  , reject H0 and accept H1; If BS  , accept 0H  and reject 1H ; If A BS S  , 

continue sampling. 

2.2. Model Solution 

In practical production processes, manufacturers must make acceptance or rejection decisions 

under different confidence levels. This study evaluates the proposed model under two specific 

confidence levels: 95% (Case 1) and 90% (Case 2). Based on these confidence levels, the 

corresponding Type I error probability α is calculated. Empirical statistical knowledge suggests that 

  and 1 −  exhibit an approximate inverse relationship. Therefore, during the solution process, 

the value of   is selected according to  . 

For Case 1 (95% confidence level), we obtain 0.05 =  and 0.1 = , with the upper stopping 

threshold 1 18AS =  and the lower stopping threshold 1 0.105BS  ; For Case 2 (90% confidence 

level), we have 0.1 =  and 0.2 = , with the upper stopping threshold 1 0.222BS  . 

Based on the stopping boundaries ( , )A BS S  under both scenarios, sequential sampling is 

performed on the component population. The likelihood ratio   is calculated, and corresponding 

decisions are made according to the model rules. 

2.3. Analysis of Model Results 

To further validate the model's rationality, two sample categories were selected for visualization 

on the Python platform: one with defect rates significantly exceeding the nominal value and the other 

approximating the nominal value, as illustrated in Figure 1. 

  

(a)                                       (b) 

  

(c)                                     (d) 

Figure 1. Variation of Log-Likelihood Ratio in Sequential Analysis 
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Table 1. Description of Likelihood Ratio Logarithmic Value Changes 

 Case 1 (95%) Case 2 (90%) 

Defect Rate 0.2 0.08 0.2 0.08 

Stopping Sample Size 135 338 117 204 

Logarithm of Likelihood Ratio 2.905≥ln (SA1) -2.271≤ln (SB1) 2.081≥ln (SA2) -1.513≤ln (SB2) 

Corresponding Figure Reject H0 Accept H0 Reject H0 Accept H0 

Corresponding Figure Figure 1a Figure 1b Figure 1c Figure 1d 
 

To validate the model’s rationality, this study visualizes log-likelihood ratio trends for two sample 

types-20% (high defect rate) and 8% (near-nominal defect rate)-under 95% and 90% confidence 

levels via Python (Figure 1). Four subplots illustrate the dynamic decision mechanism. 

For 20% defect rates (subplots (a, c)), the log-likelihood ratio rises rapidly, exceeding the upper 

threshold to trigger rejection: 135 samples (95% confidence) and 117 samples (90% confidence), 

both fewer than fixed-sample methods, demonstrating efficient risk screening and adaptability to 

confidence requirements. 

At 8% defect rates (subplots (b, d)), the ratio stabilizes around zero before declining to the lower 

threshold for acceptance: 338 samples (95%) and 204 samples (90%), minimizing over-inspection 

compared to fixed sampling. Confidence-level differences validate the inverse efficiency-correlation, 

guiding strategy adjustments. 

Table 1 and subplots show the model uses likelihood ratio dynamics to reduce inspections for 

deviating defects and prevent waste near nominal levels, balancing quality and cost effectively. 

3. Research on Cost Optimization Decision Model 

3.1. Establishment of Minimum-Cost Decision Model 

Following the requirements for decision model construction, the objective function is defined to 

maximize corporate profit [9]. 

max v c = −                                 (3) 

(1) Stage-Specific Cost Analysis 

For Stage 1, costs include material costs and inspection costs. 

The manufacturer decides whether to inspect components. If inspected, the process incurs a unit 

inspection cost ic  per component. Qualified components proceed to assembly, while defective ones 

are removed. The cost of defective components is calculated as i pip c , where ip  is the defect rate 

of component i , and pic  denotes the unit purchase price of component i . 

For Stage 2, costs include assembly costs and inspection costs, while revenue derives from the 

market selling price of finished products. 

The enterprise incurs a unit assembly cost sc  for assembling components into finished products. 

A decision is made on whether to inspect the assembled products. If inspected, a unit inspection cost 

cc  is incurred. The revenue from qualified products is calculated as: 

2

1

pi s

i

v c c
=

− −                                (4) 

Defective products detected during inspection proceed to the next stage's decision-making, while 

non-inspected finished products are entirely released into the market. To address the complexity and 

consistency of model variables, the revenue from finished products is converted into a negative cost 

v− , and the product manufacturing cost tc  is defined as: 
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2

1

st pi

i

c c c v
=

−+=                              (5) 

For Stage 3, costs include disassembly costs, opportunity costs of discarding finished products, 

and reuse costs of disassembled components. 

The enterprise replaces non-inspected defective products, incurring a unit replacement cost dc . 

For defective products detected post-inspection and returned defective products, a disassembly 

decision is made: 

If disassembly is chosen, a unit disassembly cost rc  is incurred. Disassembled components are 

then reused, with a unit reuse cost uc .If disassembly is declined, an opportunity cost 0c  is incurred 

due to product discard. 

Integrating the Stage 3 analysis, the total cost totalc  of finished products can be expressed as: 

total i c t r u dc c c c c c c= + + + + +                         (6) 

(2) Objective Function Formulation 

After converting the revenue from finished products into a negative cost v− , the objective 

function is transformed into a cost minimization function min c . Integrating the cost analyses across 

all stages outlined above, the cost minimization function min c  is defined by the following 

relationship: 

min totalc c=                                 (7) 

During the model establishment phase, multiple interdependent stages (e.g., component inspection, 

finished product assembly, product inspection, and defective product handling) and state transitions 

(e.g., component qualification status influencing subsequent decisions) are involved. These stages 

exhibit dependency relationships, where decision outcomes from prior stages directly affect the costs 

and benefits of subsequent stages. 

Dynamic programming is well-suited for such problems due to its ability to handle overlapping 

subproblems and exploit optimal substructure properties [10]. By formulating state transition 

equations and preserving intermediate computational results, the method eliminates redundant 

calculations, thereby efficiently identifying the global optimal solution [11]. 

3.2. Model Solution 

(1) Stage Identification in Dynamic Programming Process 

The stages in the dynamic programming process align with the three production stages established 

in the model (Section 3.1). 

(2) Decision Variables and Allowable Decision Sets 

For Stage 1, the decision variable di represents the inspection decision for component i , where: 

0,
( 1,2)

1

       

   
i

don
d

ot inspect component i

inspect compo i
i

nent


= =
 ,

                   (8) 

For Stage 2, the decision variable d3 represents the inspection decision for finished products: 

3

 0,

1

     

   
d

udonot inspect finished prod cts

inspect finished products


= 
 ，

                    (9) 

For Stage 3, the decision variable d4 represents the disassembly decision for defective finished 

products: 
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4

       0,

   1

 

 

u
d

donot disassembledefective finished prod cts

disassembledefective finished products


= 
 ，

              (10) 

Allowable decision set: 

 1 2 3 4, , ,D d d d d=                              (11) 

(3) Formulation of State Transition Equation 

The state variable ks  represents the cumulative set of all decisions made from the initial stage to 

the current stage. The state transition equation is formulated as follows: 

4

3 4

1 2 3 4

, 3

, , 2

, , , , 1

k

d k

s d d k

d d d d k

=


= =
 =

                          (12) 

(4) Determination of Optimal Value Function 

The optimal value function ( )i iV s , representing the cumulative cost from the initial stage to the 

current stage, satisfies the following recursive relationship. The dynamic programming approach is 

applied in a backward induction manner to solve for the minimum total cost from Stage 3 to Stage1. 

For Stage 3, disassembled products comprise two categories: Non-inspected replaced products 

(defective items returned without prior inspection). Inspected defective products (identified through 

quality checks in Stage 2). 

When 4 0d = , defective products are not disassembled and are directly discarded. When 4 1d = , 

the enterprise incurs the reuse cost 4 ud c  for inspected defective products, while bearing the 

replacement cost ( )31 dd c−   for non-inspected defective products and recovering their material cost 

( )3 41 md d c−  . 

Here, the reuse cost cu comprises the disassembly cost cr and the recycled material cost 

( )1 1 2,V d d , mathematically expressed as: 

1 1 2( ),u rc c V d d= −                               (13) 

Therefore, the mathematical expression for ( )3 3V s
 is: 

3 3 4 3 4( ) (1 ) [ ]u d t mV s d c d c c d c=  + −  + −                      (14) 

For Stage 2, when 3 0d =  (no inspection of finished products), 2 2( )V s  equals the manufacturing 

cost tc ; when 3 0d =  (inspection performed), 2 2( )V s  includes the unit inspection cost cc , the 

expected cost ]  [r failE p  for defective products entering Stage 3, and the expected cost ]  [o failE p   

for qualified products in Stage 2. The expected cost for defective products entering Stage 3 is defined 

as: 

3 3[ ] ( )r fail failE p p V s=                              (15) 

failp  denotes the actual defect rate of finished products. 

1 1 2 2( ) ( )1 ( )1 1 1fail sp d p d p p= − −   −   −                      (16) 

The expected cost ]  [o failE p  for conforming products in Stage 2 is defined as follows: 

[ ] (1 )o fail fail tE p p c= −                             (17) 
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Therefore, the mathematical expression for 2 2( )V s  can be formulated as: 

3 3

3 3 3 3

2 2( ) [ ] [ ]} ( )

( ) ( ) ]

{ 1

[ 1 (1 )

c t

c f t

r fail o fail

ail fail t

V Ed c d c

d c p

p

V s p c d c

s E p + + − 

=  + 

+

+ −

=

+ −  
                (18) 

Integrating the recursive processes across all three stages, the optimal value function for the initial 

stage is determined as follows: 

2

1 1 2 2 2 2

1

( ) ( ) ( )[ 1 1] ( ) ( )i i i pi i i

i

V s d c p c p V s d V s
=

=  +  + −  + −                (19) 

Integrating the recursive processes across all three stages, the optimal value function for the initial 

stage is determined as follows: 

1

1 1( )
s

minV s                                  (20) 

Based on the established optimal value functions, this study derives optimal decisions for six 

typical production scenarios encountered by the enterprise in component manufacturing, as detailed 

in Table 2. Given the objective of minimizing total costs, a negative optimal total cost indicates 

corporate profitability, whereas a positive value signifies financial losses. 

Table 2. Six Typical Production Scenarios Encountered by the Enterprise 

Scenario 

Component 1 Component 2 Finished Products 
Defective Finished 

Products 

Defect 

Rate 

Unit 

Purchase 

Price 

Inspection 

Cost 

Defect 

Rate 

Unit 

Purchase 

Price 

Inspection 

Cost 

Defect 

Rate 

Unit 

Purchase 

Price 

Inspection 

Cost 

Market 

Selling 

Price 

Replacement 

Loss 

Disassembly 

Cost 

1 10% 4 2 10% 18 3 10% 6 3 56 6 5 

2 20% 4 2 20% 18 3 20% 6 3 56 6 5 

3 10% 4 2 10% 18 3 10% 6 3 56 30 5 

4 20% 4 1 20% 18 1 20% 6 2 56 30 5 

5 10% 4 8 20% 18 1 10% 6 2 56 10 5 

6 5% 4 2 5% 18 3 5% 6 3 56 10 40 

 

Using a reference batch of 100 finished products for each scenario, the detailed decision outcomes 

are summarized in Table 3. 

Table 3. Description of Optimal Decisions for Each Scenario 

Scenario Profit Amount Stage 1 Stage 2 Stage 3 

1 2060.0 
Do not inspect Component 1 and 

Component 2 

Do not inspect finished 

products 

Do not disassemble 

defective products 

2 1320.0 
Do not inspect Component 1 and 

Component 2 

Do not inspect finished 

products 

Do not disassemble 

defective products 

3 1440.0 
Inspect Component 1 and 

Component 2 

Do not inspect finished 

products 

Do not disassemble 

defective products 

4 980.0 
Inspect Component 1 and 

Component 2 

Do not inspect finished 

products 

Disassemble defective 

products 

5 1940.0 
Do not inspect Component 1; 

inspect Component 2 

Do not inspect finished 

products 

Do not disassemble 

defective products 

6 2430.0 
Do not inspect Component 1 and 

Component 2 

Do not inspect finished 

products 

Do not disassemble 

defective products 

 

Table 3 reveals varying optimal decisions in different production scenarios. In most cases (e.g., 

Scenarios 1, 2, 6), high inspection costs or near-nominal defect rates lead to no inspection in Stages 

1 and 2, controlling costs for profit. When defect rates rise (Scenarios 3, 4) or inspection costs are 

low, Stage 1 inspects components. In Scenario 4, high replacement losses prompt Stage 3 to 

disassemble defective products. The model balances stage-wise costs via dynamic programming, 

aligning decisions with profit goals and validating multi-stage optimization. 
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3.3. Model Evaluation 

To further validate whether the optimal solutions derived by the minimum-cost decision model for 

the six typical scenarios align with practical feasibility, we perform an exhaustive enumeration of all 

16 decision possibilities for each scenario, resulting in a total of 96 possibilities. 

 

Figure 2. Profit Amount Comparison Chart for All Decision Scenarios 

The profit amounts for all possible scenarios are visualized as shown in Figure 2. After exhaustive 

enumeration, the six optimal decisions corresponding to minimum cost and maximum revenue for 

the six typical scenarios align perfectly with the optimal solutions derived by the minimum-cost 

decision model for the cases in Table 2. Based on this, it can be concluded that the model provides 

enterprises with optimal decision-making solutions from a minimum-cost perspective. 

4. Conclusion 

This study proposes a hybrid decision-making model integrating truncated sequential sampling 

with dynamic programming to address quality inspection and cost optimization challenges in 

electronics manufacturing. 

The truncated sequential credibility inspection model dynamically adjusts sampling strategies 

based on likelihood ratio tests (LRT). At a 95% confidence level, it efficiently rejects batches with a 

20% defect rate using fewer samples than fixed sampling methods and reduces unnecessary 

inspections when the defect rate is close to the nominal 10%, significantly lowering inspection costs 

while maintaining statistical rigor. The multi-stage dynamic programming model, solving via 

backward induction, derives optimal decisions for six typical production scenarios, quantifying cost 

dependencies across inspection, assembly, and disassembly stages to achieve global cost 

minimization. The core innovation lies in the synergistic integration of truncation design, LRT, and 

dynamic programming, forming a quantifiable and reusable decision framework. 

Looking ahead, this model can be applied to high-mix, low-volume manufacturing, supply chain 

quality management, and intelligent production systems, offering adaptive solutions to balance 

quality control and profitability in dynamic industrial environments. 
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